Paradoxes, we are never left?

This thought contains at least one error. If it contained an error, I'd be making a mistake saying it contains at least one error. actually, posso affermare con certezza che l’errore non sussiste nel testo del this thought, but if the latter statement were true, then there is a mistake in the opening sentence.

In truth non siamo riusciti a risolvere tutti i paradoxes. in particular, while some are seemingly unsolvable paradoxes, others are actually no way out. for example, the famous paradox of Achilles and the tortoise, conceived by Zeno, It was dissolved with the application of calculus, It discovered in the eighteenth century by Leibniz and Newton. Other paradoxes, such as the liar (*) , They are still unsolvable because they exploit the characteristic of self-, or circularity of language. A system that refers to itself (He speaks of himself) It may present defects in the bottom. Paradoxes, that in more technical terms are called antinomies, hanno avuto un duplice ruolo nella history of knowledge: da una parte sono stati utilizzati per mostrare che il language e le capacità conoscitive umane hanno dei limiti intrinseci e, other, logicians and scientists have exploited them to refute the theories of their illustrious colleagues. There are different types of paradoxes. The paradox of Achilles and the tortoise it's a paradox negative. This kind of paradoxes is used as a reductio ad absurdum of the falsity of a hypothesis of departure. in particular, Zeno tried to defend the idea of ​​the illusion of movement Parmenidean.

Parmenides argued, indeed, that motion does not exist. On the other side, Heraclitus affermava che tutto è fluire e movimento. Neither he has "won" definitively, But we realized that the Zeno's paradox It was unsolvable because the Greeks lacked the mathematical tools to solve it.
another type of paradox is rhetorical, that comes from the typical reasoning sophist who wants to prove the correctness of a statement and its opposite. for example, Protagora affermò che la malattie è un fine it's a male. Infatti per il malato è un male, ma per il medico che prende i soldi è un fine. Tali paradossi venivano utilizzati dai sofisti per dimostrare che tutto è relativo e che non si può comprendere la differenza tra fine is male.

At this point the question is: perché le antinomie e i paradossi hanno sempre attirato l’attenzione dei Philosophy e degli scienziati?

Il problema principale dello sviluppo della knowledge umana è, and it's always been, to eliminate the contradictions and psychological components from language tecnico di ogni science (humanistic or natural it). L’obiettivo ideale sarebbe quello di rendere la knowledge a "calculation". Recall Leibniz:

"Consequently, quando sorgeranno controversie fra due Philosophy, no longer you need a discussion, come [it is not] between two computers. It will suffice, indeed, that they take in hand pens, They sit in front of the schedules and (if it please, su invito di un friend)
They say to each other: Calculemus!ʱ?? (M. Millers, Leibniz e la logic Symbolic. School open, Sansoni, 1973.)

Leibniz andava alla search di una caratteristica universale che rendesse conto della corrispondenza tra realtà, language e pensiero, e che fosse capace di ricostruire in modo perfetto la relazione tra le cose del world e tutte le loro possibili combinazioni. Egli voleva costruire una science universale da cui potessero be dedotte tutte le altre scienze, as specific instances of the universal. From then on,, mathematicians and logicians have striven for groped to build a logical system perfect, che permettesse perlomeno di basare l’intera math on logic. Il logicismo è il tentativo di ridurre la math ai concetti ed alle regole della logic. If the goal had been reached, one might have to go to the other natural sciences and, finally, estendere tale metodo alla philosophy ed alle human Sciences. each science sarebbe diventata un’applicazione specifica delle leggi universali della logic is, for this, right, rigorous and indisputable. In fact, after more than two thousand years, we realized we could never build a system (however strict) in which every part can be demonstrated according to the methods of logic classical.

Paradoxes last edit: Thursday,12 June 10:50, 2014 the nabladue
Share!










Submit
More share buttons
Share on Pinterest
There are no images.